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Proposition 0.1 (Exercise 1). Every abelian group of order 1008 is, up to isomorphism, a
direct sum from one of each column:

A(2) A(3) A(7)
Z16 Z9 Z7

Z8 ⊕ Z2 Z3 ⊕ Z3

Z4 ⊕ Z4

Z4 ⊕ Z2 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

Proof. Let A be an abelian group of order 1008. Note that 1008 = 24327. By Theorem 8.1
(Lang), we have

A = A(2)⊕ A(3)⊕ A(7)

and by Theorem 8.2 (Lang), A(2) is isomorphic to one of Z16,Z8⊕Z2,Z4⊕Z4,Z4⊕Z2⊕Z2,
or Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2. By the same theorem, A(3) is isomorphic to one of Z9,Z3 ⊕ Z3, and
A(7) ∼= Z7. Thus we can take any combination of these, and each choice is unique up to
isomorphism, as 2, 3, 7 are pairwise relatively prime, and reordering a direct product does
not change the isomorphism class.

Proposition 0.2 (Exercise 2a). Let {Ai}i∈I be a family of abelian groups of exponent m.
Then (⊕

i∈I

Ai

)∧
∼=
∏
i∈I

(A∧i )

Proof. Let λi : Ai → ⊕iAi be the map x 7→ (0, . . . , x, . . . 0). We define two maps,(⊕
i∈I

Ai

)∧
→
∏
i∈I

(A∧i )
∏
i∈I

(A∧i )→

(⊕
i∈I

Ai

)∧
ψ 7→ (ψ ◦ λi) (ψi) 7→ ψ

On the right, ψ is the unique homomorphism from ⊕Ai to Z/mZ such that ψ◦λi = ψi for all
i (this homomorphism exists and is unique by the universal property of the direct sum, Lang
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Proposition 7.1). First we show that both maps are homomorphisms. Let ψ, χ ∈ (⊕Ai)
∧.

Then

ψ + χ 7→ ((ψ + χ) ◦ λi) = (ψ ◦ λi + χ ◦ λi) = (ψ ◦ λi) + (χ ◦ λi)

so the left map is a homomorphism. Now let (ψi), (χi) ∈
∏

(A∧i ), and let ψ, χ be their
respective images in (⊕Ai)

∧.

(ψi) + (χi) = (ψi + χi) 7→ φ

where φ ◦ λi = ψi + χi. But we also have

(ψ + χ) ◦ λi = ψ ◦ λi + χ ◦ λi = ψi + χi

so by the uniqueness of the map φ, we have φ = ψ+χ, thus (ψi)+(χi) 7→ ψ+χ, so the right
map is also a homomorphism. Now we claim that these maps are inverse to each other. In
one direction, for any (ψi) ∈

∏
(A∧i ) we have the composition

(ψi) 7→ ψ 7→ (ψ ◦ λi) = (ψi)

so we have the identity on
∏

(A∧i ). In the other direction, for any ψ ∈ (⊕Ai)
∧, we have

ψ 7→ (ψ ◦ λi) 7→ φ

where φ is the unique homomorphism such that φ ◦ λi = ψ ◦ λi. Obviously, ψ is also a
homomorphism satisfying ψ ◦ λi = ψ ◦ λi, so φ = ψ. Thus this composition is the map
ψ 7→ ψ, so it is the identity on (⊕Ai)

∧. Thus these maps are both isomorphisms.

Proposition 0.3 (Exercise 2b). It is not true in general that(∏
i∈I

Ai

)∧
∼=
⊕
i∈I

A∧i

Proof. Let Ai = Z/2Z and let I = N. Then A∧i
∼= Z/2Z, so we have⊕

i∈I

A∧i =
⊕
n∈N

Z/2Z

which is countable. On the other hand,∏
i∈I

Ai =
∏
n∈N

Z/2Z

is uncountable, since it can be put in one-to-one correspondence with the real numbers
between 0 and 1, if we think of each element as a binary expansion. More importantly, we
claim that (∏

n∈N

Z/2Z

)∧
= Hom

(∏
n∈N

Z/2Z,Z/2Z

)
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is uncountable. For each nonzero element x = (xi) ∈
∏

n∈N Z/2Z, we define a map φx :∏
n∈N Z/2Z → Z/2Z such that φx(x) = 1 and φx(y) = 0 for y 6= x. In terms of the

Kronecker delta function, we can write this as φx(y) = δyx. This is a homomorphism, as

φx(y + z) = δy+z
x =

{
0 y, z 6= x or y = z = x

1 y = x or z = x but not both

= δyx + δzx = φx(y) + φx(z)

And each φx is a different homomorphism from each other φx. Thus there are uncountably
many distinct elements of the dual of the direct product, so there cannot be a bijection.
Thus they are not isomorphic.

Proposition 0.4 (Exercise 2c). There is an abelian group A of exponent m such that A is
not isomorphic to A∧ or to A∧∧.

Proof. Let A =
⊕

n∈N Z/mZ. Since Z/mZ is finite, Z/mZ ∼= (Z/mZ)∧, so by part (a),

A∧ =

(⊕
n∈N

Z/mZ

)∧
∼=
∏
n∈N

Z/mZ

But as shown in part (b), this infinite direct sum is not isomorphic to the infinite direct
product, so A cannot be isomorphic to A∧. By a similar argument as in part (b), the dual
of the uncountable direct product is also uncountable, so A is not isomorphic to A∧∧.

Proposition 0.5 (Exercise 3a). Let I be a partially ordered indexing set, and let {Gi}i∈I be
an inversely directed family of groups and f j

i : Gj → Gi for i ≤ j and let

Γ = lim
←−

Gi

Let G =
∏

i∈I Gi and let pi : G→ Gi be the canonical projection (xi) 7→ xi. Let ι : Γ→ G be
the inclusion map. Then define πi : Γ→ Gi by πi = ι ◦ pi. Then πi is a canonical projection
homomorphism.

Proof. Γ is a subgroup of G as noted in Lang, thus the inclusion is a homomorphism, i.e.
ι(xy) = xy) = ι(x)ι(y). The projection pi : G→ Gi is also a homomorphism, because if we
have x = (xi) ∈ G and y = (yi) ∈ G, then

pi(xy) = (xy)i = xiyi = pi(x)pi(y)

Thus πi is a composition of homomorphisms so it is a homomorphism.

Proposition 0.6 (Exercise 3b). Let Γ = lim
−→
Gi. Then let H be a group and φi : H → Gi

be a family of homomorphisms such that f j
i ◦ φi whenever i ≤ j. Then define φ : G→ Γ by

h 7→ (φi(h)). Then φ is the unique homomorphism from H to Γ such that φi = πi ◦ φ for all
i.
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Proof. First, we show that φ maps into Γ. To do this, we need to show that f j
i ◦ πj ◦ φ(h) =

πi ◦ φ(h). We have πi ◦ φ = φi, so

f j
i ◦ πj ◦ φ(h) = f j

i ◦ φj(h) = φi(h) = πi ◦ φ(h)

Thus φ maps into Γ. Now we show that φ is a homomorphism.

φ(hk) = (φi(hk)) = (φi(h)φi(k)) = (φi(h))(φi(k)) = φ(h)φ(k)

Thus φ is a homomorphism. It is clear that φi ◦ πi ◦ φ. Finally, we need to show that φ is
unique. Suppose ψ : H → Γ is also a homomorphism such that πi ◦ ψ = φi. Then

πi ◦ ψ(h) = φi(h) =⇒ ψ(h) = (φi(h))

thus ψ = φ. Thus φ is unique.

Lemma 0.7 (for Exercise 4). Let G be a finitely generated abelian group and H a subgroup.
Then G/H is a finitely generated abelian group.

Proof. Let {x1, . . . xn} be a generating set for G and let gH ∈ G/H. Then g can be written
as g =

∑
i aixi where ai ∈ Z. Then gH = (

∑
i aixi)H =

∑
i ai(xiH) so {xiH} is a generating

set for G/H.

Lemma 0.8 (for Exercise 4). Let G be a finitely generated abelian group of rank n and H a
subgroup of rank m. Then G/Htor is a finitely generated abelian group of rank n.

Proof. G/Htor is a finitely generated abelian group by the previous lemma. Let {x1, . . . xn}
be a basis for Gfree. Let π : G → G/Htor be the canonical projection. We claim that
{π(x1), . . . π(xn)} is a basis for the free part of G/Htor. Let gHtor ∈ (G/Htor)free. Then
g ∈ G so g can be written uniquely as g = y +

∑n
i=1 aixi where y has finite order. Then

gHtor = π

(
y +

n∑
i=1

aixi

)
= π(y) +

n∑
i=1

aiπ(xi) =
n∑

i=1

aiπ(xi)

Since y has finite order, so does π(y); therefore, because g ∈ (G/Htor)free, we must have
π(y) = 0. We now need to show that this linear combination is unique. If we have

gHtor =
n∑

i=1

aiπ(xi) =
n∑

i=1

biπ(xi)

Then we must have

Htor =
n∑

i=1

(bi − ai)π(xi) =

(
n∑

i=1

(bi − ai)xi

)
Htor =⇒

n∑
i=1

(bi − ai)xi ∈ Htor

But every non-zero linear combination of {xi} lies in Gfree, so it has infinite order. Therefore
the only linear combination of {xi} in Htor is the trivial one, so bi = ai. Thus the linear
combination is unique.
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Proposition 0.9 (Exercise 4). Let G be a finitely generated abelian group of rank n. Let H
be a subgroup of rank m. Then G/H has rank n−m, and in particular, m ≤ n.

Proof. By the third isomorphism theorem,

G/H ∼=
G/Htor

H/Htor

As shown above, G/Htor is a finitely generated abelian group of rank n. H/Htor is free of
rank m by Theorem 8.5 (Lang), thus H/Htor must be contained in the free part of G/Htor,
so we have

G/Htor

H/Htor

∼=
(G/Htor)free
H/Htor

⊕ (G/Htor)tor

By the above lemma, (G/Htor)free ∼= Zn, so

(G/Htor)free
H/Htor

⊕ (G/Htor)tor ∼=
Zn

Zm
⊕ (G/Htor)tor ∼= Zn−m ⊕ (G/Htor)tor

Hence
G/H ∼= Zn−m ⊕ (G/Htor)tor

so G/H has rank n−m. As finitely generated abelian groups have non-negative rank, this
implies that m ≤ n.

Proposition 0.10 (Exercise 24). Let p be a prime, and let G be a group of order p2. Then
G is abelian, and there are only two such groups up to isomorphism.

Proof. We know that Z(G) is nontrivial. By Lagrange’s Theorem, it must have order p2 or
p. If it has order p2, then Z(G) = G so G is abelian. Suppose that the order of Z(G) is
p. We know the center is a normal subgroup, so |G/Z(G)| = |G|/|Z(G)| = p2/p = p. Thus
G/Z(G) has order p, so it is cyclic. Then by a previous result, G is abelian.

Now we show there are precisely two groups of order p2. By Theorem 8.2 (Lang), G is
isomorphic to either Zp2 or Zp ⊕ Zp.

Proposition 0.11 (Exercise 43). Let G be a finite abelian group and H a subgroup. Then
G has a subgroup isomorphic to G/H.

Proof. By the classification of finite abelian groups, we can write G as

G ∼=
m⊕
i=1

Z/pni
i Z

where the pi may not all be distinct. Then a subgroup H must be isomorphic to

H ∼=
m⊕
i=1

Z/pkii Z

where ki ≤ ni. Then it follows that

G/H ∼=
m⊕
i=1

Z/pni−ki
i Z

which is isomorphic to a subgroup of G.
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Lemma 0.12 (for Exercise 50a). Let Xi be a family of abelian groups and let A be an abelian
group and let φi : Xi → A be a family of group homomorphisms. Define

X =

{
(xi)i∈I ∈

⊕
i∈I

Xi

∣∣∣∣∣φj(xj) = φk(xk) for all j, k ∈ I

}

Then X is a subgroup of
⊕

i∈I Xi.

Proof. We know that X contains the identity (0, 0, . . .) as we have φj(0) = φk(0) = 0 for all
j, k ∈ I. If (xi)i∈I , (yi)i∈I ∈ X, then their sum is (xi + yi), and so

φj(xj + yj) = φj(xj) + φj(yj) = φk(xk) + φk(yk) = φk(xk + yk)

so (xi) + (yi) ∈ X. The inverse of (xi)i∈I is (−xi)i∈I , as

(xi) + (−xi) = (xi − xi) = (0, . . .)

Proposition 0.13 (Exercise 50a). Fiber products exist in the category of abelian groups. In
particular, in the case of just two group homomorphisms φ1 : X1 → A and φ2 : X2 → A, we
have

X1 ×A X2 = {(x1, x2) ∈ X1 ⊕X2 : φ1(x1) = φ2(x2)}

Proof. Let Ab be the category of abelian groups. Let A be an abelian group and let AbA

be the category of morphisms into A. We need to show that products exist in AbA. More
precisely, we need to show that for every family {φi}i∈I of objects in AbA, there exists
φ ∈ Ob(AbA) and a family of morphisms pi ∈ Mor(φ, φi) such that for every ψ ∈ Ob(AbA)
with a family of morphisms gi ∈ Mor(ψ, φi) there is a unique morphism h ∈ Mor(ψ, φ) such
that pi ◦ h = gi for all i.

Let {φi}i∈I be a family of objects in AbA, that is, let φi : Xi → A be a family of group
homomorphisms from abelian groups Xi into A. Let

X =

{
(xi) ∈

⊕
i∈I

Xi

∣∣∣∣∣φj(xj) = φk(xk) for all j, k ∈ I

}

As shown above, X is a subgroup of
⊕

i∈I Xi, so X is an abelian group. Then we define
φ : X → A by (xi)i∈I 7→ φi(xi) where i can be any i ∈ I. This is well-defined as φi(xi) =
φj(xj) for any j ∈ I. Note that φ is a homomorphism, because if we have x = (xi)i∈I and
y = (yi)i∈I with x, y ∈ X, then

φ(x+ y) = φ((xi + yi)i∈I) = φi(xi + yi) = φi(xi) + φi(yi) = φ(x) + φ(y)

Thus φ is an object in AbA. Let pi : X → Xi be the projection (xj)j∈J 7→ xi. Also, pi is a
morphism in AbA, because φi ◦ pi = φ. In particular, pi ∈ Mor(φ, φi).

φi ◦ pi(x) = φi(xi) = φ(x)
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We claim that (φ, {pi}) is a product in AbA. Let ψ be an object in AbA and let gi ∈
Mor(ψ, φi). Then ψ is a group homomorphism from some abelian group Y into A and each
gi is a group homomorphism from Y to Xi such that ψ = φi ◦ gi. We need h ∈ Mor(ψ, φ)
such that pi ◦h = gi for all i. That is, we need a group homomorphism h : Y → X such that
h ◦ pi = gi. Define h : Y → X by

y 7→ (gi(y))i∈I

Then φ◦h(y) = φ((gi(y)) = φi(gi(y)) = ψ(y) so h ∈ Mor(ψ, φ). Furthermore, pi◦h(y) = gi(y)
so we have the needed pi◦h = gi. Finally, we just need to show that h is unique. If f : Y → X
is another homomorphism such that pi ◦ f = gi, then f(y) = (gi(y))i∈I , so f = h. Thus h is
unique.

Proposition 0.14 (Exercise 50b). In the category of abelian groups, the pull-back of a
surjective homomorphism is surjective.

Proof. Let X, Y, Z be abelian groups and let f : X → Z and g : Y → Z be group homomor-
phisms, and let X ×Z Y be the fiber product. Let p2 : X ×Z Y → Y be the pull-back of f
by g. As shown in part (a), p2(x, y) = y. We suppose that f is surjective, and want to show
that p2 is surjective. Let y ∈ Y . Then g(y) ∈ X, so by surjectivity of f there exists x ∈ X
such that f(x) = g(y). Thus (x, y) ∈ X ×Z Y so p2(x, y) = y. Thus p2 is surjective.

Proposition 0.15 (Exercise 52a). Fiber coproducts exist in the category of abelian groups.
In particular, the fiber coproduct of two homomorphisms f, g is the factor group X ⊕Z Y =
(X ⊕ Y )/W where W = {(f(z),−g(z)) ∈ X ⊕ Y : z ∈ Z}.
Proof. Let f, g be objects in AbZ , so X, Y are abelian groups and f : Z → X and g : Z → Y
are group homomorphisms. Let W and X ⊕Z Y be as described. Define i1 : X → X ⊕Z Y
and i2 : Y → Y ⊕Z Y by

i1(x) = (x, 0)W i2(y) = (0, y)W

and define φ : Z → X ⊕Z Y by z 7→ (f(z), 0)W . Then we have

φ(z) = i1 ◦ f(z) = (f(z), 0)W = (f(z), 0)W − (f(z),−g(z))W = (0, g(z))W = i2 ◦ g(z)

We claim that (φ, {i1, i2}) is a fiber coproduct of f and g. Let j1 : Y → C and j2 : X → C
and ψ : Z → C be group homomorphisms such that j1 ◦ f = ψ and j2 ◦ g = ψ, that is,
j1 ∈ Mor(f, ψ) and j2 ∈ Mor(g, ψ). Then define u : X ⊕Z Y → C by

(x, y)W 7→ j1(x) + j2(y)

Then u is well-defined because if (x, y)W = (x′, y′)W then we have f(z) = x − x′ and
−g(z) = y − y′ for some z ∈ Z, so

u((x, y)W )− u((x′, y′)W ) = j1(x) + j2(y)− j1(x′)− j2(y′)
= j1(x− x′) + j2(y − y′) = j1 ◦ f(z)− j2 ◦ g(z) = 0

Note that u is a homomorphism because j1, j2 are homomorphisms. Then we have j1 ◦ f =
u◦i1◦f easily, and for the other required commutative diagram we check that u◦i2◦g = j2◦g.

u ◦ i2 ◦ g(z) = u((0, g(z))W ) = u((f(z), 0)W ) = j1 ◦ f(z) = g2 ◦ g(z)

Finally, u is unique, because if we have another homomorphism v : X ⊕Z Y → C such that
v ◦ i2 ◦ g = j2 ◦ g and j1 ◦ f = v ◦ i1 ◦ f , we must have u = v.
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Proposition 0.16 (Exercise 52b). In the category of abelian groups, the push-out of an
injective homomorphism is injective.

Proof. Let f, g be objects in AbZ and let i2 be the push-out of f by g, so we have i2◦g = i1◦f .
Suppose that f is injective. We need to show that i2 is injective. Because f is injective, it
has trivial kernel. We compute

ker i2 = {y ∈ Y : i2(y) = W} = {y ∈ Y : (0, y) ∈ W} = {y ∈ Y : (0, y) = (f(z),−g(z))}

Since ker f is trivial, this implies that z = 0 so −g(z) = 0 so ker i2 is trivial. Thus i2 is
injective.
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